615 research outputs found

    Extrinsic Curvature Embedding Diagrams

    Get PDF
    Embedding diagrams have been used extensively to visualize the properties of curved space in Relativity. We introduce a new kind of embedding diagram based on the {\it extrinsic} curvature (instead of the intrinsic curvature). Such an extrinsic curvature embedding diagram, when used together with the usual kind of intrinsic curvature embedding diagram, carries the information of how a surface is {\it embedded} in the higher dimensional curved space. Simple examples are given to illustrate the idea.Comment: 22 pages, 4 figure

    Stability of six-dimensional hyperstring braneworlds

    Full text link
    We study a six-dimensional braneworld model with infinite warped extra dimensions in the case where the four-dimensional brane is described by a topological vortex of a U(1) symmetry-breaking Abelian Higgs model in presence of a negative cosmological constant. A detailed analysis of the microscopic parameters leading to a finite volume space-time in the extra dimensions is numerically performed. As previously shown, we find that a fine-tuning is required to avoid any kind of singularity on the brane. We then discuss the stability of the vortex by investigating the scalar part of the gauge-invariant perturbations around this fine-tuned configuration. It is found that the hyperstring forming Higgs and gauge fields, as well as the background metric warp factors, cannot be perturbed at all, whereas transverse modes can be considered stable. The warped space-time structure that is imposed around the vortex thus appears severely constrained and cannot generically support nonempty universe models. The genericness of our conclusions is discussed; this will shed some light on the possibility of describing our space-time as a general six-dimensional warped braneworld.Comment: 26 pages, 13 figures, uses RevTex, fine-tuning and stability analysis discussed in greater details. Matches published versio

    General Invariants of Irregular Analytic Elements

    Full text link

    Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes: Matching between Hawking temperature and Unruh temperature

    Full text link
    We study the matching between the Hawking temperature of a large class of static D-dimensional black holes and the Unruh temperature of the corresponding higher dimensional Rindler spacetime. In order to accomplish this task we find the global embedding of the D-dimensional black holes into a higher dimensional Minkowskian spacetime, called the global embedding Minkowskian spacetime procedure (GEMS procedure). These global embedding transformations are important on their own, since they provide a powerful tool that simplifies the study of black hole physics by working instead, but equivalently, in an accelerated Rindler frame in a flat background geometry. We discuss neutral and charged Tangherlini black holes with and without cosmological constant, and in the negative cosmological constant case, we consider the three allowed topologies for the horizons (spherical, cylindrical/toroidal and hyperbolic).Comment: 7 pages; ReVTeX

    Tiling of the five-fold surface of Al(70)Pd(21)Mn(9)

    Full text link
    The nature of the five-fold surface of Al(70)Pd(21)Mn(9) has been investigated using scanning tunneling microscopy. From high resolution images of the terraces, a tiling of the surface has been constructed using pentagonal prototiles. This tiling matches the bulk model of Boudard et. al. (J. Phys.: Cond. Matter 4, 10149, (1992)), which allows us to elucidate the atomic nature of the surface. Furthermore, it is consistent with a Penrose tiling T^*((P1)r) obtained from the geometric model based on the three-dimensional tiling T^*(2F). The results provide direct confirmation that the five-fold surface of i-Al-Pd-Mn is a termination of the bulk structure.Comment: 4 pages, 4 figure

    Racial Disparities in Intravenous Recombinant Tissue Plasminogen Activator Use Persist at Primary Stroke Centers.

    Get PDF
    BACKGROUND: Primary stroke centers (PSCs) utilize more recombinant tissue plasminogen activator (rt-PA) than non-PSCs. The impact of PSCs on racial disparities in rt-PA use is unknown. METHODS AND RESULTS: We used data from the Nationwide Inpatient Sample from 2004 to 2010, limited to states that publicly reported hospital identity and race. Hospitals certified as PSCs by The Joint Commission were identified. Adults with a diagnosis of ischemic stroke were analyzed. Rt-PA use was defined by the International Classification of Diseases, 9th Revision procedure code 99.10. Discharges (304 152 patients) from 26 states met eligibility criteria, and of these 71.5% were white, 15.0% black, 7.9% Hispanic, and 5.6% other. Overall, 24.7% of white, 27.4% of black, 16.2% of Hispanic, and 29.8% of other patients presented to PSCs. A higher proportion received rt-PA at PSCs than non-PSCs in all race/ethnic groups (white 7.6% versus 2.6%, black 4.8% versus 2.0%, Hispanic 7.1% versus 2.4%, other 7.2% versus 2.5%, all P CONCLUSIONS: Racial disparities in intravenous rt-PA use were not reduced by presentation to PSCs. Black patients were less likely to receive thrombolytic treatment than white patients at both non-PSCs and PSCs. Hispanic patients were less likely to be seen at PSCs relative to white patients and were less likely to receive intravenous rt-PA in the fully adjusted model

    Berry phases for composite fermions: effective magnetic field and fractional statistics

    Full text link
    The quantum Hall superfluid is presently the only viable candidate for a realization of quasiparticles with fractional Berry phase statistics. For a simple vortex excitation, relevant for a subset of fractional Hall states considered by Laughlin, non-trivial Berry phase statistics were demonstrated many years ago by Arovas, Schrieffer, and Wilczek. The quasiparticles are in general more complicated, described accurately in terms of excited composite fermions. We use the method developed by Kjonsberg, Myrheim and Leinaas to compute the Berry phase for a single composite-fermion quasiparticle, and find that it agrees with the effective magnetic field concept for composite fermions. We then evaluate the "fractional statistics", related to the change in the Berry phase for a closed loop caused by the insertion of another composite-fermion quasiparticle in the interior. Our results support the general validity of fractional statistics in the quantum Hall superfluid, while also giving a quantitative account of corrections to it when the quasiparticle wave functions overlap. Many caveats, both practical and conceptual, are mentioned that will be relevant to an experimental measurement of the fractional statistics. A short report on some parts of this article has appeared previously.Comment: 14 pages, 9 figure

    Analytic Coulomb matrix elements in the lowest Landau level in disk geometry

    Full text link
    Using Darling's theorem on products of generalized hypergeometric series an analytic expression is obtained for the Coulomb matrix elements in the lowest Landau level in the representation of angular momentum. The result is important in the studies of Fractional Quantum Hall effect (FQHE) in disk geometry. Matrix elements are expressed as simple finite sums of positive terms, eliminating the need to approximate these quantities with slowly-convergent series. As a by-product, an analytic representation for certain integals of products of Laguerre polynomials is obtained.Comment: Accepted to J. Math. Phys.; 3 pages revtex, no figure

    A maximum density rule for surfaces of quasicrystals

    Get PDF
    A rule due to Bravais of wide validity for crystals is that their surfaces correspond to the densest planes of atoms in the bulk of the material. Comparing a theoretical model of i-AlPdMn with experimental results, we find that this correspondence breaks down and that surfaces parallel to the densest planes in the bulk are not the most stable, i.e. they are not so-called bulk terminations. The correspondence can be restored by recognizing that there is a contribution to the surface not just from one geometrical plane but from a layer of stacked atoms, possibly containing more than one plane. We find that not only does the stability of high-symmetry surfaces match the density of the corresponding layer-like bulk terminations but the exact spacings between surface terraces and their degree of pittedness may be determined by a simple analysis of the density of layers predicted by the bulk geometric model.Comment: 8 pages of ps-file, 3 Figs (jpg

    Vacuum solutions which cannot be written in diagonal form

    Full text link
    A vacuum solution of the Einstein gravitational field equation is given that follows from a general ansatz but fails to follow from it if a certain symmetric matrix is assumed to be in diagonal form from the beginning.Comment: 18 pages, latex, no figures. An Acknowledgement, 4 references, and the section "Note added" are adde
    • …
    corecore